mobile robots

Sunday, January 20, 2008

Stepper motor

Stepper motors operate much differently from normal DC motors, which rotate when voltage is applied to their terminals. Stepper motors, on the other hand, effectively have multiple "toothed" electromagnets arranged around a central gear-shaped piece of iron. The electromagnets are energized by an external control circuit, such as a microcontroller. To make the motor shaft turn, first one electromagnet is given power, which makes the gear's teeth magnetically attracted to the electromagnet's teeth. When the gear's teeth are thus aligned to the first electromagnet, they are slightly offset from the next electromagnet. So when the next electromagnet is turned on and the first is turned off, the gear rotates slightly to align with the next one, and from there the process is repeated. Each of those slight rotations is called a "step." In that way, the motor can be turned a precise angle. There are two basic arrangements for the electromagnetic coils: bipolar and unipolar.

Stepper motors are constant-power devices (power = angular velocity x torque). As motor speed increases, torque decreases. The torque curve may be extended by using current limiting drivers and increasing the driving voltage.

Steppers exhibit more vibration than other motor types, as the discrete step tends to snap the rotor from one position to another. This vibration can become very bad at some speeds and can cause the motor to lose torque. The effect can be mitigated by accelerating quickly through the problem speed range, physically dampening the system, or using a micro-stepping driver. Motors with greater number of phases also exhibit smoother operation than those with fewer phases.

1 Comments:

Anonymous Anonymous said...

This is interesting information about stepper motors, now I know how they work.

April 24, 2008 at 10:01 AM  

Post a Comment

Subscribe to Post Comments [Atom]

<< Home